Research Paper: A Multi-aspect Comparison Study of Supervised Word Sense Disambiguation

نویسندگان

  • Hongfang Liu
  • Virginia Teller
  • Carol Friedman
چکیده

OBJECTIVE The aim of this study was to investigate relations among different aspects in supervised word sense disambiguation (WSD; supervised machine learning for disambiguating the sense of a term in a context) and compare supervised WSD in the biomedical domain with that in the general English domain. METHODS The study involves three data sets (a biomedical abbreviation data set, a general biomedical term data set, and a general English data set). The authors implemented three machine-learning algorithms, including (1) naïve Bayes (NBL) and decision lists (TDLL), (2) their adaptation of decision lists (ODLL), and (3) their mixed supervised learning (MSL). There were six feature representations (various combinations of collocations, bag of words, oriented bag of words, etc.) and five window sizes (2, 4, 6, 8, and 10). RESULTS Supervised WSD is suitable only when there are enough sense-tagged instances with at least a few dozens of instances for each sense. Collocations combined with neighboring words are appropriate selections for the context. For terms with unrelated biomedical senses, a large window size such as the whole paragraph should be used, while for general English words a moderate window size between 4 and 10 should be used. The performance of the authors' implementation of decision list classifiers for abbreviations was better than that of traditional decision list classifiers. However, the opposite held for the other two sets. Also, the authors' mixed supervised learning was stable and generally better than others for all sets. CONCLUSION From this study, it was found that different aspects of supervised WSD depend on each other. The experiment method presented in the study can be used to select the best supervised WSD classifier for each ambiguous term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review: Semi-Supervised Learning Methods for Word Sense Disambiguation

Word sense disambiguation (WSD) is an open problem of natural language processing, which governs the process of identifying the appropriate sense of a word in a sentence, when the word has multiple meanings. Many approaches have been proposed to solve the problem, of which supervised learning approaches are the most successful. However supervised machine learning are limited by the difficulties...

متن کامل

Word Sense Disambiguation: A Unified Evaluation Framework and Empirical Comparison

Word Sense Disambiguation is a longstanding task in Natural Language Processing, lying at the core of human language understanding. However, the evaluation of automatic systems has been problematic, mainly due to the lack of a reliable evaluation framework. In this paper we develop a unified evaluation framework and analyze the performance of various Word Sense Disambiguation systems in a fair ...

متن کامل

A Comparison between Supervised Learning Algorithms for Word Sense Disambiguation

This paper describes a set of comparative experiments, including cross{corpus evaluation, between ve alternative algorithms for supervised Word Sense Disambiguation (WSD), namely Naive Bayes, Exemplar-based learning, SNoW, Decision Lists, and Boosting. Two main conclusions can be drawn: 1) The LazyBoosting algorithm outperforms the other four state-of-theart algorithms in terms of accuracy and ...

متن کامل

Word Sense Disambiguation by Semi-supervised Learning

In this paper we propose to use a semi-supervised learning algorithm to deal with word sense disambiguation problem. We evaluated a semi-supervised learning algorithm, local and global consistency algorithm, on widely used benchmark corpus for word sense disambiguation. This algorithm yields encouraging experimental results. It achieves better performance than orthodox supervised learning algor...

متن کامل

The Effect of the Number of Features to Supervised Chinese Word Sense Disambiguation

Although feature selection is very important during either supervised or unsupervised word sense disambiguation processing, there is no systematic study on investigating the relationship between the number of features and the performance as we know yet. This paper investigates the effect of the number of features to supervised Chinese word sense disambiguation through thousands of experiments o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Medical Informatics Association : JAMIA

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2004